In mathematics, a cubic function is a function of the form that is, a polynomial function of degree three. In many texts, the coefficients , , , and are supposed to be real numbers, and the function is considered as a real function that maps real numbers to real numbers or as a complex function that maps to complex numbers. In other cases, the coefficients may be complex numbers, and the function is a complex function that has the set of the complex numbers as its codomain, even when the domain is restricted to the real numbers.
Setting produces a cubic equation of the form
A cubic function with real coefficients has either one or three real roots (which may not be distinct); all odd-degree polynomials with real coefficients have at least one real root.
The graph of a cubic function always has a single inflection point. It may have two critical points, a local minimum and a local maximum. Otherwise, a cubic function is monotonic. The graph of a cubic function is symmetric with respect to its inflection point; that is, it is invariant under a rotation of a half turn around this point. Up to an affine transformation, there are only three possible graphs for cubic functions.
Cubic functions are fundamental for cubic interpolation.
The solutions of this equation are the -values of the critical points and are given, using the quadratic formula, by
The sign of the expression inside the square root determines the number of critical points. If it is positive, then there are two critical points, one is a local maximum, and the other is a local minimum. If , then there is only one critical point, which is an inflection point. If , then there are no (real) critical points. In the two latter cases, that is, if is nonpositive, the cubic function is strictly monotonic. See the figure for an example of the case .
The inflection point of a function is where that function changes concavity. An inflection point occurs when the second derivative is zero, and the third derivative is nonzero. Thus a cubic function has always a single inflection point, which occurs at
Although cubic functions depend on four parameters, their graph can have only very few shapes. In fact, the graph of a cubic function is always similar to the graph of a function of the form
This means that there are only three graphs of cubic functions up to an affine transformation.
The above geometric transformations can be built in the following way, when starting from a general cubic function
Firstly, if , the change of variable allows supposing . After this change of variable, the new graph is the mirror image of the previous one, with respect of the -axis.
Then, the change of variable provides a function of the form
The change of variable corresponds to a translation with respect to the -axis, and gives a function of the form
The change of variable corresponds to a uniform scaling, and give, after multiplication by a function of the form
Then, if , the non-uniform scaling gives, after division by
The graph of a cubic function is symmetric with respect to its inflection point, and is invariant under a rotation of a half turn around the inflection point.
As this property is invariant under a rigid motion, one may suppose that the function has the form
If is a real number, then the tangent to the graph of at the point is the line
So, the function that maps a point of the graph to the other point where the tangent intercepts the graph is
There are two standard ways for using this fact. Firstly, if one knows, for example by physical measurement, the values of a function and its derivative at some sampling points, one can interpolate the function with a continuously differentiable function, which is a piecewise cubic function.
If the value of a function is known at several points, cubic interpolation consists in approximating the function by a continuously differentiable function, which is piecewise cubic. For having a uniquely defined interpolation, two more constraints must be added, such as the values of the derivatives at the endpoints, or a zero curvature at the endpoints.
|
|